DNA-binding domain mutations in SMAD genes yield dominant-negative proteins or a neomorphic protein that can activate WG target genes in Drosophila.
نویسندگان
چکیده
Mutations in SMAD tumor suppressor genes are involved in approximately 140,000 new cancers in the USA each year. At this time, how the absence of a functional SMAD protein leads to a tumor is unknown. However, clinical and biochemical studies suggest that all SMAD mutations are loss-of-function mutations. One prediction of this hypothesis is that all SMAD mutations cause tumors via a single mechanism. To test this hypothesis, we expressed five tumor-derived alleles of human SMAD genes and five mutant alleles of Drosophila SMAD genes in flies. We found that all of the DNA-binding domain mutations conferred gain-of-function activity, thereby falsifying the hypothesis. Furthermore, two types of gain-of-function mutation were identified - dominant negative and neomorphic. In numerous assays, the neomorphic allele SMAD4(100T) appears to be capable of activating the expression of WG target genes. These results imply that SMAD4(100T) may induce tumor formation by a fundamentally different mechanism from other SMAD mutations, perhaps via the ectopic expression of WNT target genes - an oncogenic mechanism associated with mutations in Adenomatous Polyposis Coli. Our results are likely to have clinical implications, because gain-of-function mutations may cause tumors when heterozygous, and the life expectancy of individuals with SMAD4(100T) is likely to be different from those with other SMAD mutations. From a larger perspective, our study shows that the genetic characterization of missense mutations, particularly in modular proteins, requires experimental verification.
منابع مشابه
I-41: Genetic Causes of Premature Ovarian Failure (POF) and early Menopause
Premature ovarian failure (POF) is a heterogeneous disorder, defined as menopause under age 40 years. The prevalence is 1%; POF before age 30 years is much less common. Chromosomal causes have long been recognized - visible deletions of the X chromosome, 45,X/46,XX mosaicism, and autosomal rearrangements (balanced translocations). Toxins or iatrogenic causes (e.g., chemotherapeutic agents) are ...
متن کاملBoth the paired domain and homeodomain are required for in vivo function of Drosophila Paired.
Drosophila paired, a homolog of mammalian Pax-3, is key to the coordinated regulation of segment-polarity genes during embryogenesis. The paired gene and its homologs are unusual in encoding proteins with two DNA-binding domains, a paired domain and a homeodomain. We are using an in vivo assay to dissect the functions of the domains of this type of molecule. In particular, we are interested in ...
متن کاملA screen for dominant mutations applied to components in the Drosophila EGF-R pathway.
The Drosophila epidermal growth factor receptor (EGF-R) controls many critical cell fate choices throughout development. Several proteins collaborate to promote localized EGF-R activation, such as Star and Rhomboid (Rho), which act sequentially to ensure the maturation and processing of inactive membrane-bound EGF ligands. To gain insights into the mechanisms underlying Rho and Star function, w...
متن کاملA molecular mechanism of temperature sensitivity for mutations affecting the Drosophila muscle regulator Myocyte enhancer factor-2.
Temperature-sensitive (TS) mutations are a useful tool for elucidating gene function where a gene of interest is essential at multiple stages of development. However, the molecular mechanisms behind TS alleles vary. TS mutations of the myogenic regulator Myocyte enhancer factor-2 (MEF2) in Drosophila arise in the heteroallelic combination Mef2(30-5)/Mef2(44-5). We show that the 30-5 mutation af...
متن کاملIn vivo DNA-binding and oligomerization properties of the Shigella flexneri AraC-like transcriptional regulator VirF as identified by random and site-specific mutagenesis.
In Shigella flexneri expression of the plasmid-encoded virulence genes is regulated via a complex mechanism involving both environmental signals and specific transactivators. The primary regulator protein, VirF, is a member of the AraC family of transcription factors and shares with other AraC-like proteins a conserved carboxy-terminal domain thought to be important for DNA binding. Random and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 132 21 شماره
صفحات -
تاریخ انتشار 2005